Reduced mobility of fibroblast growth factor (FGF)-deficient myoblasts might contribute to dystrophic changes in the musculature of FGF2/FGF6/mdx triple-mutant mice.

نویسندگان

  • Petra Neuhaus
  • Svetlana Oustanina
  • Tomasz Loch
  • Marcus Krüger
  • Eva Bober
  • Rosanna Dono
  • Rolf Zeller
  • Thomas Braun
چکیده

Development and regeneration of muscle tissue is a highly organized, multistep process that requires cell proliferation, migration, differentiation, and maturation. Previous data implicate fibroblast growth factors (FGFs) as critical regulators of these processes, although their precise role in vivo is still not clear. We have explored the consequences of the loss of multiple FGFs (FGF2 and FGF6 in particular) for muscle regeneration in mdx mice, which serve as a model for chronic muscle damage. We show that the combined loss of FGF2 and FGF6 leads to severe dystrophic changes in the musculature. We found that FGF6 mutant myoblasts had decreased migration ability in vivo, whereas wild-type myoblasts migrated normally in a FGF6 mutant environment after transplantation of genetically labeled myoblasts from FGF6 mutants in wild-type mice and vice versa. In addition, retrovirus-mediated expression of dominant-negative versions of Ras and Ral led to a reduced migration of transplanted myoblasts in vivo. We propose that FGFs are critical components of the muscle regeneration machinery that enhance skeletal muscle regeneration, probably by stimulation of muscle stem cell migration.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A role for FGF-6 in skeletal muscle regeneration.

Fibroblast growth factor-6 (FGF-6) belongs to a family of cytokines that control cell proliferation, cell differentiation, and morphogenetic events. Individual FGFs are either expressed widely or in a restricted pattern during embryonic, fetal, and adult life. FGF-6 exhibits a restricted expression profile predominantly in the myogenic lineage. Important functions in wound healing and tissue re...

متن کامل

FGF signalling is required for differentiation-induced cytoskeletal reorganisation and formation of actin-based processes by podocytes.

To examine the potential role of fibroblast growth factor (FGF) signalling during cell differentiation, we used conditionally immortalised podocyte cells isolated from kidneys of Fgf2 mutant and wild-type mice. Wild-type mouse podocyte cells upregulate FGF2 expression when differentiating in culture, as do maturing podocytes in vivo. Differentiating wild-type mouse podocyte cells undergo an epi...

متن کامل

Expression of the Fgf6 gene is restricted to developing skeletal muscle in the mouse embryo.

Fgf6, a member of the Fibroblast Growth Factor (FGF) family, is developmentally regulated and its expression is highly restricted in the adult. To gain further insight into the role of Fgf6, we studied its expression during embryogenesis using RNA in situ hybridization. Fgf6 expression is restricted to developing skeletal muscle. Fgf6 transcripts are first detected in the somites at 9.5 days po...

متن کامل

Relative expression of fibroblast growth factor-1 in the cerebrospinal fluid of patients with bacterial meningitis; A Western Blot analysis

Meningitis is an inflammation of the membranes that surround the brain and spinal cord, thereby involving the arachnoid, the pia and the cerebrospinal fluid (CSF). It is divided into viral and bacterial meningitis. For different reasons the diagnosis of bacterial meningitis is very important. The examination of CSF samples may provide information about causative microorganism. The sensivity of ...

متن کامل

Disruption of the fibroblast growth factor-2 gene results in decreased bone mass and bone formation.

Basic fibroblast growth factor (FGF-2), an important modulator of cartilage and bone growth and differentiation, is expressed and regulated in osteoblastic cells. To investigate the role of FGF-2 in bone, we examined mice with a disruption of the Fgf2 gene. Measurement of trabecular bone architecture of the femoral metaphysis of Fgf2(+/+) and Fgf2(-/-) adult mice by micro-CT revealed that the p...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Molecular and cellular biology

دوره 23 17  شماره 

صفحات  -

تاریخ انتشار 2003